Тонкі підмножини груп

Автор(и)

  • І. В. Протасов Kyiv Nat. Taras Shevchenko Univ.
  • С. В. Слободянюк

Анотація

Нехай $G$ — група, $m$ — натуральне число. Пщмножина$A \subseteq G$ називається $m$-тонкою, якщо для кожної скінченної підмножини $F$ групи $G$ знайдеться така скінченна пщмножина $K$, що $|F_g ∩ A| ≤ m$ для всіх $g ∈ G \ K$. Доведено, що $m$-тонку підмножину абелевої групи $G$ потужності $ℵ_n;\; n = 0, 1,…$, можна розбити на $≤ m^{n+1}$ 1-тонких підмножин. Побудовано групу $G$ потужності $ℵ_n$ i 2-тонку підмножину $G$, яку не можна розбити на скінченне число 1-тонких підмножин.

Опубліковано

25.09.2013

Номер

Розділ

Статті

Як цитувати