Вiдносно тонкi та розрiдженi пiдмножини груп
Анотація
Припустимо, що $G$ — група з одиницею $e$, $\mathcal{I}$ — iнварiантний злiва iдеал в булевiй алгебрi $\mathcal{P}_G$ всiх пiдмножин групи $G$. Пiдмножина $A$ групи $G$ називається $\mathcal{I}$-тонкою, якщо $gA \bigcap A \in \mathcal{I}$ для кожного $g \in G \ \{e\}$. Пiдмножина $A$ групи $G$ називається $\mathcal{P}$-розрiдженою, якщо для кожної нескiнченної множини $S$ групи $G$ iснує скiнченна пiдмножина $F \subset S$ така, що $\bigcap_{g \in F}gA \in F$. Говорять, що iдеал $\mathcal{I}$ тонко-повний (розрiджено-повний), якщо кожна $\mathcal{I}$-тонка ($\mathcal{I}$-розрiджена) множина групи $G$ належить $\mathcal{I}$. Визначено та описано тонке та розрiджене доповнення iдеалу в $\mathcal{P}_G$.Завантаження
Опубліковано
25.02.2011
Номер
Розділ
Статті
Як цитувати
Луценко, І., and І. В. Протасов. “Вiдносно тонкi та розрiдженi пiдмножини груп”. Український математичний журнал, vol. 63, no. 2, Feb. 2011, pp. 216-25, https://umj.imath.kiev.ua/index.php/umj/article/view/2712.