Q-переставнi пiдгрупи скiнченних груп

Автор(и)

  • Л. Мяо School Math. Sci., Yangzhou Univ., China
  • Ж. Пу School Math. and Statistics, Hexi Univ., China

Анотація

Пiдгрупу $H$ групи $G$ називають $Q$-переставною в $G$, якщо iснує пiдгрупа $B$ групи $G$ така, що: 1) $G = HB$ та 2) якщо $H_1$ — максимальна пiдгрупа $H$, що мiстить $H_{QG}$, то $H_1B = BH_1 < G$, де $H_{QG}$ є найбiльшою переставною пiдгрупою $G$, що мiститься в $H$. У цiй роботi доведено наступне твердження. Нехай $F$ — насичена формацiя, що мiстить $U$, а $G$ — група з нормальною пiдгрупою $H$ такою, що $G/H \in F$. Якщо кожна максимальна пiдгрупа кожної нециклiчної силовської пiдгрупи $F∗(H)$, що не має надрозв’язного доповнення в $G$, є $Q$-переставною в $G$, то $G \in F$.

Опубліковано

25.11.2011

Номер

Розділ

Статті

Як цитувати