Лінійно впорядковані компакти і конаміокові простори

Автор(и)

  • В. В. Михайлюк

Анотація

Доказано, что для произвольных пространства Бера $X$, линейно упорядоченного компакта $Y$ и раздельно непрерывного отображения $f:\, X \times Y \rightarrow \mathbb{R},$ существует плотное в $X$ $G_{\delta}$ -множество $A \subseteq X$ такое, что функция $f$ непрерывна по совокупности переменных в каждой точке множества $A \times Y$, т. е. произвольный линейно упорядоченный компакт является конамиоковым пространством.

Опубліковано

25.07.2007

Номер

Розділ

Короткі повідомлення

Як цитувати

Михайлюк, В. В. “Лінійно впорядковані компакти і конаміокові простори”. Український математичний журнал, vol. 59, no. 7, July 2007, pp. 1001–1004, https://umj.imath.kiev.ua/index.php/umj/article/view/3362.