Про еквівалентність деяких умов для вагових просторів Гарді
Анотація
Нехай $G ∈ H_{σ}^p (ℂ+)$, де $H_{σ}^p (ℂ+)$ — клас функцій, аналітичних у правій півилощині $$\mathop {\sup }\limits_{\left| \varphi \right| < \tfrac{\pi }{2}} \left\{ {\int\limits_0^{ + \infty } {\left| {G(re^{i\varphi } )} \right|^p e^{ - p\sigma r\left| {sin\varphi } \right|} dr} } \right\} < + \infty .$$ У випадку, коли сингулярна іранична функція функції $G$ є тотожно сталою і $G(z) ≠ 0$ для всіх $z ∈ ℂ_{+}$, знайдено еквівалентні умови до $G(z)\exp \left\{ {\frac{{2\sigma }}{\pi }zlnz - cz} \right\} \notin H^p (\mathbb{C}_+ )$, де $H^p (ℂ_{+})$ — простір Гарді, у термінах поведінки $G$ на дійсній півосі та на уявній осі.Завантаження
Опубліковано
25.09.2006
Номер
Розділ
Короткі повідомлення
Як цитувати
Дільний, В. М. “Про еквівалентність деяких умов для вагових просторів Гарді”. Український математичний журнал, vol. 58, no. 9, Sept. 2006, pp. 1257–1263, https://umj.imath.kiev.ua/index.php/umj/article/view/3526.