Скалярные операторы, представимые суммой проекторов
Анотація
Вивнаються множини $\Sigma _n = \{ \alpha \in \mathbb{R}^1 |$ існують $n$ проекторів $P_1,...,P_n$ таких, що $\sum\nolimits_{k = 1}^n {P_k = \alpha I} \}$. Доведено: якщо $n ≥ 6$, то $$\left\{ {0,1,1 + \frac{1}{{n - 1}},\left[ {1 + \frac{1}{{n - 2}},n - 1 - \frac{1}{{n - 2}}} \right],n - 1 - \frac{1}{{n - 1}},n - 1,n} \right\} \supset.$$Завантаження
Опубліковано
25.07.2001
Номер
Розділ
Статті
Як цитувати
Рабанович, В. И., and Ю. С. Самойленко. “Скалярные операторы, представимые суммой проекторов”. Український математичний журнал, vol. 53, no. 7, July 2001, pp. 939-52, https://umj.imath.kiev.ua/index.php/umj/article/view/4315.