Один контрприклад у опуклому наближенні

Автор(и)

  • Л. П. Ющенко

Анотація

Доведено існування неперервної і опуклої на $[-1, 1]$ функції $f$ такої, що для будь-якої послідовності ${p_n}_{n = 1}^{∞}$ опуклих на $[-1,1]$ алгебраїчних многочленів ${p_n}$ степеня <п має місце співвідношення $$\begin{array}{*{20}c} {\lim \sup } \\ {n \to \infty } \\ \end{array} \begin{array}{*{20}c} {\max } \\{x \in [ - 1,1]} \\ \end{array} \frac{{|f(x) - p_n (x)|}}{{\omega _4 (\rho _n (x),f)}} = \infty$$ де $ω_4(t, f)$ —четвертий модуль неперервності функції $\rho _n \left( x \right): = \frac{1}{{n^2 }} + \frac{1}{n}\sqrt {1 - x^2 }$. Цей результат узагальнено для $q$ -опуклих функцій.

Опубліковано

25.12.2000

Номер

Розділ

Короткі повідомлення

Як цитувати