Про зростання функцій, зображених рядами Діріхле з комплексними показниками, на дійсній осі
Анотація
Знайдено умови, за яких для ряду Діріхле $F(z) = \sum_{n = 1}^{∞} d n \exp(λ_n z)$ із нерівності $⋎F(x)⋎ ≤ y(x),\quad x ≥ x_0$, випливає, що$\sum_{n = 1}^{∞} |d_n \exp(λ_n z)| ⪯ γ((1 + o(1))x)$, $x → +∞$ де $γ$— неспадпа функція на $(−∞,+∞)$.Завантаження
Опубліковано
25.12.1997
Номер
Розділ
Статті
Як цитувати
Винницький, Б. В. “Про зростання функцій, зображених рядами Діріхле з комплексними показниками, на дійсній осі”. Український математичний журнал, vol. 49, no. 12, Dec. 1997, pp. 1610–1616. December, https://umj.imath.kiev.ua/index.php/umj/article/view/5165.