Sufficient and necessary conditions for the generalized distribution series to be in subclasses of univalent functions

Автор(и)

  • W. Y. Kota Department of Mathematics, Faculty of Science, Damietta University New Damietta, Egypt
  • R. M. El-Ashwah Department of Mathematics, Faculty of Science, Damietta University New Damietta, Egypt

DOI:

https://doi.org/10.3842/umzh.v75i10.7267

Ключові слова:

Generalized distribution; univalent functions; analytic functions; Hadamard product.

Анотація

УДК 517.5

Достатні та необхідні умови для того, щоб ряди узагальнених розподілів належали до підкласів однолистих функцій

Встановлено зв'язок між підкласами однолистих функцій і рядами узагальнених  розподілів. Основною метою цього дослідження є встановлення необхідних і достатніх умов для того, щоб ряди узагальнених   розподілів належали до класів ${\mathcal{TF}}(\rho,\vartheta),$ $\mathcal{{TH}}(\rho,\vartheta), \,\mathcal{{TJ}}(\rho,\vartheta)$ і $\mathcal{{TX}}(\rho,\vartheta)$. Крім того,  отримано деякі окремі випадки наших основних результатів. 

Посилання

S. Altinkaya, S. Yalcn, Poisson distribution series for analytic univalent functions, Complex Anal. and Oper. Theory, 12, № 5, 1315–1319 (2018). DOI: https://doi.org/10.1007/s11785-018-0764-y

A. K. Bakhtin, I. V. Denega, Weakened problem on extremal decomposition of the complex plane, Mat. Stud., 51, № 1, 35–40 (2019). DOI: https://doi.org/10.15330/ms.51.1.35-40

A. K. Bakhtin, I. V. Denega, Extremal decomposition of the complex plane with free poles II, J. Math. Sci., 246, № 1, 1–17 (2020). DOI: https://doi.org/10.1007/s10958-020-04718-z

A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Math., 1994, Springer-Verlag, Berlin (2010). DOI: https://doi.org/10.1007/978-3-642-12230-9

V. B. L. Chaurasia, H. S. Parihar, Certain sufficiency conditions on Fox–Wright functions, Demonstr. Math., 41, № 4, 813–822 (2008). DOI: https://doi.org/10.1515/dema-2008-0409

P. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62, № 1, 37–43 (1977). DOI: https://doi.org/10.1090/S0002-9939-1977-0425097-1

S. S. Ding, Y. Ling, G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. and Appl., 195, № 1, 71–81 (1995). DOI: https://doi.org/10.1006/jmaa.1995.1342

R. M. El-Ashwah, Subclasses of bi-univalent functions defined by convolution, J. Egyptian Math. Soc., 22, 348–351 (2014). DOI: https://doi.org/10.1016/j.joems.2013.06.017

R. M. El-Ashwah, A. H. El-Qadeem, Certain geometric properties of some Bessel functions}; arXiv:1712.01687v1 [math.CV] 2 Dec 2017.

R. M. El-Ashwah, W. Y. Kota, Some condition on a poisson distribution series to be in subclasses of univalent functions, Acta Univ. Apulensis, 51, 89–103 (2017). DOI: https://doi.org/10.17114/j.aua.2017.51.08

R. M. El-Ashwah, W. Y. Kota, Some application of a Poisson distribution series on subclasses of univalent functions, J. Fract. Calc. and Appl., 9, № 1, 167–179 (2018).

B. A. Frasin, Poisson distribution series on a general class of analytic functions, Acta Comment. Univ. Tartu. Math., 24, № 2, 241–251 (2020). DOI: https://doi.org/10.12697/ACUTM.2020.24.16

A. Gangadharan, T. N. Shanmugam, H. M. Srivastava, Generalized hypergeometric functions associated with $k$-uniformly convex functions, Comput. Math. Appl., 44, 1515–1526 (2002). DOI: https://doi.org/10.1016/S0898-1221(02)00275-4

A. Y. Lashin, On a certain subclass of starlike functions with negative coefficients, J. Inequal. Pure and Appl. Math., 10, № 2, 1–8 (2009).

A. Y. Lashin, A. O. Badghaish, A. Z. Bajamal, The sufficient and necessary conditions for the Poisson distribution series to be in some subclasses of analytic functions, J. Funct. Spaces, 2022, Article ID 2419196 (2022). DOI: https://doi.org/10.1155/2022/2419196

A. Y. Lashin, A. O. Badghaish, A. Z. Bajamal, Certain subclasses of univalent functions involving Pascal distribution series, Bol. Soc. Mat. Mex., 28, № 1, 1–11 (2022). DOI: https://doi.org/10.1007/s40590-021-00403-6

R. J. Libera, Some radius of convexity problems, Duke Math. J., 31, 143–158 (1964). DOI: https://doi.org/10.1215/S0012-7094-64-03114-X

G. Murugusundaramoorthy, K. Vijaya, S. Porwal, Some inclusion results of certain subclasses of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45, № 4, 1101–1107 (2016). DOI: https://doi.org/10.15672/HJMS.20164513110

M. Obradovic, S. B. Joshi, On certain classes of strongly starlike functions, Taiwanese J. Math., 2, № 3, 297–302 (1998). DOI: https://doi.org/10.11650/twjm/1500406969

H. Orhan, On a subclass of analytic functions with negative coefficients, Appl. Math. and Comput., 142, № 2-3, 243–253 (2003). DOI: https://doi.org/10.1016/S0096-3003(02)00299-0

S. Ponnusamy, F. Ronning, Starlikeness properties for convolution involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska, 1, № 16, 141–155 (1998).

S. Porwal, Generalized distribution and its geometric properties associated with univalent functions, J. Complex Anal., 2018, Article ID 8654506 (2018). DOI: https://doi.org/10.1155/2018/8654506

S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., Article ID~984135 (2014). DOI: https://doi.org/10.1155/2014/984135

S. Porwal, M. Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43, 163–172 (2015). DOI: https://doi.org/10.1007/s10013-014-0089-8

R. K. Raina, On univalent and starlike Wright's hypergeometric functions, Rend. Semin. Mat. Univ. Padova, 95, 11–22 (1996).

M. S. Robertson, On the theory of univalent functions, Ann. Math. J., 37, № 2, 374–408 (1936). DOI: https://doi.org/10.2307/1968451

A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure and Appl. Math., 5, № 4, Article ID 83 (2004).

Завантаження

Опубліковано

24.10.2023

Номер

Розділ

Статті

Як цитувати

Kota, W. Y., and R. M. El-Ashwah. “Sufficient and Necessary Conditions for the Generalized Distribution Series to Be in Subclasses of Univalent Functions”. Український математичний журнал, vol. 75, no. 10, Oct. 2023, pp. 1366-7, https://doi.org/10.3842/umzh.v75i10.7267.