On the domain of analytic continuation of Lauricella–Saran’s hypergeometric functions $F_M$ and their ratios

Authors

DOI:

https://doi.org/10.3842/umzh.v77i9.9105

Keywords:

hypergeometric function, branched continued fraction, holomorphic function, approximation by rational functions, convergence

Abstract

UDC 517.5

We consider the problem of extending the Lauricella-Saran's hypergeometric functions $F_M$ by branched continued fractions. In three-dimensional complex space, the domain of analytical continuation of the Lauricella-Saran's hypergeometric functions $F_M$ and their ratios is established.

References

1. Д. И. Боднар, Ветвящиеся цепные дроби, Наук. думка, Киев (1986).

2. R. M. Aron, R. Dmytryshyn, M. Mastyło, A. Zagorodnyuk, Recent advances in functional analysis and function theory, J. Math. Anal. and Appl., 529, Article 127560 (2024). DOI: https://doi.org/10.1016/j.jmaa.2023.127560

3. T. Antonova, R. Dmytryshyn, V. Goran, On the analytic continuation of Lauricella–Saran hypergeometric function $F_K(a_1, a_2, b_1, b_2;a_1, b_2, c_3;z)$, Mathematics, 11, Article 4487 (2023). DOI: https://doi.org/10.3390/math11214487

4. T. Antonova, R. Dmytryshyn, R. Kurka, Approximation for the ratios of the confluent hypergeometric function $Φ_D^{(N)}$ by the branched continued fractions, Axioms, 11, Article 426 (2022). DOI: https://doi.org/10.3390/axioms11090426

5. T. Antonova, R. Dmytryshyn, I.-A. Lutsiv, S. Sharyn, On some branched continued fraction expansions for Horn's hypergeometric function $H_4(a, b;c, d;z_1, z_2)$ ratios, Axioms, 12, Article 299 (2023). DOI: https://doi.org/10.3390/axioms12030299

6. T. Antonova, On structure of branched continued fractions, Carpathian Math. Publ., 16, 391–400 (2024). DOI: https://doi.org/10.15330/cmp.16.2.391-400

7. T. Antonova, R. Dmytryshyn, S. Sharyn, Generalized hypergeometric function ${}_3F_2$ ratios and branched continued fraction expansions, Axioms, 10, 310 (2021). DOI: https://doi.org/10.3390/axioms10040310

8. T. Antonova, R. Dmytryshyn, S. Sharyn, Branched continued fraction representations of ratios of Horn's confluent function $H_6$, Constr. Math. Anal., 6, 22–37 (2023). DOI: https://doi.org/10.33205/cma.1243021

9. T. M. Antonova, R. I. Dmytryshyn, Truncation error bounds for branched continued fraction whose partial denominators are equal to unity, Mat. Stud., 54, 3–14 (2020). DOI: https://doi.org/10.30970/ms.54.1.3-14

10. T. M. Antonova, R. I. Dmytryshyn, Truncation error bounds for the branched continued fraction ${Σ_{i_1 = 1}^N{a_{i(1)}}/{1}}{ +}{Σ_{i_2 = 1}^{i_1}{a_{i(2)}}/{1}}{ +}{Σ_{i_3 = 1}^{i_2}{a_{i(3)}}/{1}}{ +}...$, Ukr. Math. J., 72, 1018–1029 (2020). DOI: https://doi.org/10.1007/s11253-020-01841-7

11. I. B. Bilanyk, D. I. Bodnar, O. G. Vozniak, Convergence criteria of branched continued fractions, Res. Math., 32, 53–69 (2024). DOI: https://doi.org/10.15421/242419

12. D. I. Bodnar, I. B. Bilanyk, Two-dimensional generalization of the Thron–Jones theorem on the parabolic domains of convergence of continued fractions, Ukr. Math. J., 74, 1317–1333 (2023). DOI: https://doi.org/10.1007/s11253-023-02138-1

13. D. I. Bodnar, O. S. Bodnar, I. B. Bilanyk, A truncation error bound for branched continued fractions of the special form on subsets of angular domains, Carpathian Math.Publ., 15, 437–448 (2023). DOI: https://doi.org/10.15330/cmp.15.2.437-448

14. D. I. Bodnar, O. S. Bodnar, M. V. Dmytryshyn, M. M. Popov, M. V. Martsinkiv, O. B. Salamakha, Research on the convergence of some types of functional branched continued fractions, Carpathian Math. Publ., 16, 448–460 (2024). DOI: https://doi.org/10.15330/cmp.16.2.448-460

15. J. Choi, Recent advances in special functions and their applications, Symmetry, 15, Article 2159 (2023). DOI: https://doi.org/10.3390/sym15122159

16. R. Dmytryshyn, T. Antonova, M. Dmytryshyn, On the analytic extension of the Horn's confluent function $H_6$ on domain in the space $C^2$, Constr. Math. Anal., 7, 11–26 (2024). DOI: https://doi.org/10.33205/cma.1545452

17. R. Dmytryshyn, T. Antonova, S. Hladun, On analytical continuation of the Horn's hypergeometric functions $H_3$ and their ratios, Axioms, 14, Article 67 (2025). DOI: https://doi.org/10.3390/axioms14010067

18. R. Dmytryshyn, C. Cesarano, I.-A. Lutsiv, M. Dmytryshyn, Numerical stability of the branched continued fraction expansion of Horn's hypergeometric function $H_4$, Mat. Stud., 61, 51–60 (2024). DOI: https://doi.org/10.30970/ms.61.1.51-60

19. R. Dmytryshyn, I.-A. Lutsiv, M. Dmytryshyn, C. Cesarano, On some domains of convergence of branched continued fraction expansions of the ratios of Horn hypergeometric functions $H_4$, Ukr. Math. J., 76, 559–565 (2024). DOI: https://doi.org/10.1007/s11253-024-02338-3

20. R. Dmytryshyn, I. Nyzhnyk, On approximation some of Lauricella–Saran's hypergeometric functions $F_M$ and their ratios by branched continued fractions, Mat. Stud. (2025) (accepted). DOI: https://doi.org/10.30970/ms.63.2.136-145

21. R. Dmytryshyn, V. Oleksyn, On analytical extension of generalized hypergeometric function $_3F_2$, Axioms, 13, Article 759 (2024). DOI: https://doi.org/10.3390/axioms13110759

22. R. Dmytryshyn, S. Sharyn, Representation of special functions by multidimensional $A$- and $J$-fractions with independent variables, Fractal Fract., 9, Article 89 (2025). DOI: https://doi.org/10.3390/fractalfract9020089

23. R. I. Dmytryshyn, The multidimensional generalization of $g$-fractions and their application, J. Comput. Appl. Math., 164–165, 265–284 (2004). DOI: https://doi.org/10.1016/S0377-0427(03)00642-3

24. H. Exton, Multiple hypergeometric functions and applications, Halsted Press, Chichester (1976).

25. P.-C. Hang, L. Hu, Full asymptotic expansions of the Humbert function $Φ_1$, arXiv:2504.09280 (2025).

26. V. R. Hladun, D. I. Bodnar, R. S. Rusyn, Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements, Carpathian Math. Publ., 16, 16–31 (2024). DOI: https://doi.org/10.15330/cmp.16.1.16-31

27. V. R. Hladun, M. V. Dmytryshyn, V. V. Kravtsiv, R. S. Rusyn, Numerical stability of the branched continued fraction expansions of the ratios of Horn's confluent hypergeometric functions $H_{6}$, Math. Model. Comput., 11, 1152–1166 (2024). DOI: https://doi.org/10.23939/mmc2024.04.1152

28. V. R. Hladun, N. P. Hoyenko, O. S. Manzij, L. Ventyk, On convergence of function $F_4(1, 2;2, 2;z_1, z_2)$ expansion into a branched continued fraction, Math. Model. Comput., 9, 767–778 (2022). DOI: https://doi.org/10.23939/mmc2022.03.767

29. V. Hladun, V. Kravtsiv, M. Dmytryshyn, R. Rusyn, On numerical stability of continued fractions, Mat. Stud., 62, 168–183 (2024). DOI: https://doi.org/10.30970/ms.62.2.168-183

30. V. Hladun, R. Rusyn, M. Dmytryshyn, On the analytic extension of three ratios of Horn's confluent hypergeometric function $H_7$, Res. Math., 32, 60–70 (2024). DOI: https://doi.org/10.15421/242405

31. D. Kaliuzhnyi-Verbovetskyi, V. Pivovarchik, Recovering the shape of a quantum caterpillar tree by two spectra, Mech. Math. Methods, 5, 14–24 (2023). DOI: https://doi.org/10.31650/2618-0650-2023-5-1-14-24

32. A. A. Kaminsky, M. F. Selivanov, On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity, Int. Appl. Mech., 42, 115–126 (2006). DOI: https://doi.org/10.1007/s10778-006-0066-3

33. T. Komatsu, Asymmetric circular graph with Hosoya index and negative continued fractions, Carpathian Math. Publ., 13, 608–618 (2021). DOI: https://doi.org/10.15330/cmp.13.3.608-618

34. Y. Lutsiv, T. Antonova, R. Dmytryshyn, M. Dmytryshyn, On the branched continued fraction expansions of the complete group of ratios of the generalized hypergeometric function $_4F_3$, Res. Math., 32, 115–132 (2024). DOI: https://doi.org/10.15421/242423

35. I. Nyzhnyk, R. Dmytryshyn, T. Antonova, On branched continued fraction expansions of hypergeometric functions $F_M$ and their ratios, Modern Math. Methods, 3, 1–13 (2025). DOI: https://doi.org/10.64700/mmm.52

36. Sh. Saran, Transformations of certain hypergeometric functions of three variables, Acta Math., 93, 293–312 (1955). DOI: https://doi.org/10.1007/BF02392525

37. X.-J. Yang, Theory and applications of special functions for scientists and engineers, Springer, Singapore (2022).

Published

06.11.2025

Issue

Section

Research articles

How to Cite

Dmytryshyn, R., and I. Nyzhnyk. “On the Domain of Analytic Continuation of Lauricella–Saran’s Hypergeometric Functions $F_M$ and Their Ratios”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 9, Nov. 2025, pp. 573–583, https://doi.org/10.3842/umzh.v77i9.9105.