On extrapolation of transformations of random processes disturbed by the white noise

Authors

  • M. P. Moklyachuk Киев. ун-т

Keywords:

-

Abstract

We consider the problem of linear mean square optimal estimation of transformation

$A\xi = \int_0^{\infty}a(t)\xi (t) dt$ of a stationary random process $\xi (t)$  in observations of process $\xi (t)+\eta(t)$ for $t\leq 0$, where $\eta (t)$ is white noise uncorrelated with $\xi (t)$. We find least favorable spectral densities $f_0(\lambda)\bar{\in} \mathcal{D}$ and minimax (robust) spectral characteristics of an optimal estimator of transformation $A\xi$ for various classes $\mathcal{D}$ of densities.

References

1. Гихман И. И., Скороход А. В. Теория случайных процессов: В 3-х т.— М. : Наука, 1975. — Т. 1.— 664 с.

2. Kassam S. A., Poor V. H. Robust techniques lor signal processing: A survey // Proc. IEEE.— 1985.— 73, N 3.— P. 433—481.

3. Franke J.. Poor V. H. Minimax — robust filtering and finite — length robust predictors// Lect. Notes Statist.— 1984. —26. —P. 87—126.

4. Moklyachuk M. P. Estimation of linear functionals of a stationary stochastic processes and two-person zero-sume game // Stanford Univ. techn. rept.— 1981.— 169. — 87 p.

5. Моклячук М. П. О минимаксной фильтрации случайных процессов//Теория вероятностей и мат. статистика. — 1989. — Вып. 40. — С. 73—80.

6. Пшеничный Б. Н. Необходимые условия экстремума.— М. : Наука. 1982.— 144 с.

Downloads

Published

30.06.2025

Issue

Section

Research articles

How to Cite

Moklyachuk , M. P. “On Extrapolation of Transformations of Random Processes Disturbed by the White Noise”. Ukrains’kyi Matematychnyi Zhurnal, vol. 43, no. 2, June 2025, pp. 216-23, https://umj.imath.kiev.ua/index.php/umj/article/view/9360.