On extrapolation of transformations of random processes disturbed by the white noise
Keywords:
-Abstract
We consider the problem of linear mean square optimal estimation of transformation
$A\xi = \int_0^{\infty}a(t)\xi (t) dt$ of a stationary random process $\xi (t)$ in observations of process $\xi (t)+\eta(t)$ for $t\leq 0$, where $\eta (t)$ is white noise uncorrelated with $\xi (t)$. We find least favorable spectral densities $f_0(\lambda)\bar{\in} \mathcal{D}$ and minimax (robust) spectral characteristics of an optimal estimator of transformation $A\xi$ for various classes $\mathcal{D}$ of densities.
References
1. Гихман И. И., Скороход А. В. Теория случайных процессов: В 3-х т.— М. : Наука, 1975. — Т. 1.— 664 с.
2. Kassam S. A., Poor V. H. Robust techniques lor signal processing: A survey // Proc. IEEE.— 1985.— 73, N 3.— P. 433—481.
3. Franke J.. Poor V. H. Minimax — robust filtering and finite — length robust predictors// Lect. Notes Statist.— 1984. —26. —P. 87—126.
4. Moklyachuk M. P. Estimation of linear functionals of a stationary stochastic processes and two-person zero-sume game // Stanford Univ. techn. rept.— 1981.— 169. — 87 p.
5. Моклячук М. П. О минимаксной фильтрации случайных процессов//Теория вероятностей и мат. статистика. — 1989. — Вып. 40. — С. 73—80.
6. Пшеничный Б. Н. Необходимые условия экстремума.— М. : Наука. 1982.— 144 с.
Downloads
Published
Issue
Section
License
Copyright (c) 1991 М. П. Моклячук

This work is licensed under a Creative Commons Attribution 4.0 International License.