A result on generalized derivations on right ideals of prime rings

Authors

  • N. Argaç Ege Univ., Izmir, Turkey
  • Ç. Demir Ege Univ., Izmir, Turkey

Abstract

Let $R$ be a prime ring of characteristic not 2 and let $I$ be a nonzero right ideal of $R$. Let $U$ be the right Utumi quotient ring of $R$ and let $C$ be the center of $U$. If $G$ is a generalized derivation of $R$ such that $[[G(x), x], G(x)] = 0$ for all $x \in I$, then $R$ is commutative or there exist $a, b \in U$ such that $G(x) = ax + xb$ for all $x \in R$ and one of the following assertions is true: $$(1)\quad (a - \lambda)I = (0) = (b + \lambda)I \;\;\text{for some}\; \lambda \in C,$$ $$(2)\quad (a - \lambda)I = (0) \;\;\text{for some}\; \lambda \in C \;\;\text{and}\; b \in C.$$

Published

25.02.2012

Issue

Section

Research articles

How to Cite

Argaç, N., and Ç. Demir. “A Result on Generalized Derivations on Right Ideals of Prime Rings”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 2, Feb. 2012, pp. 165-7, https://umj.imath.kiev.ua/index.php/umj/article/view/2563.