Representations of canonical anticommutation relations with orthogonality condition

Authors

  • R. Ya. Yakymiv Нац. ун-т бiоресурсiв i природокористування України, Київ

Abstract

We study the class of Hilbert space representations of the ∗-algebra $A^{(d)}_0$ generated by relations of the form $$A^{(d)}_0 = \mathbb{C}\langle a_j, a_j^{*} | a_j^{*} a_j = 1 - a_j a_j^{*},\; a_j, a_j^{*} = 0, i \neq j,\; i, j = 1,...,d\rangle,$$ Namely, we describe the classes of unitary equivalence of irreducible representations of $A^{(d)}_0$ such that there exists $j = 1,...,d$ for which $a^2_j \neq 0$.

Published

25.09.2012

Issue

Section

Research articles

How to Cite

Yakymiv, R. Ya. “Representations of Canonical Anticommutation Relations With Orthogonality Condition”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 9, Sept. 2012, pp. 1266-72, https://umj.imath.kiev.ua/index.php/umj/article/view/2656.