Lower bound in the Bernstein inequality for the first derivative of algebraic polynomials

Authors

  • A. I. Podvysotskaya

Abstract

We prove that $\max |p′(x)|$, where $p$ runs over the set of all algebraic polynomials of degree not higher than $n ≥ 3$ bounded in modulus by 1 on [−1, 1], is not lower than \( {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} \) for all $x ∈ (−1, 1)$ such that \( \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} \).

Published

25.05.2009

Issue

Section

Short communications

How to Cite

Podvysotskaya, A. I. “Lower Bound in the Bernstein Inequality for the First Derivative of Algebraic Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 61, no. 5, May 2009, pp. 711-5, https://umj.imath.kiev.ua/index.php/umj/article/view/3053.