On differential properties of mappings into a Banach space

Authors

  • A. V. Bondar

Abstract

We prove that the Rieffel sharpness condition for a Banach space E is necessary and sufficient for an arbitrary Lipschitz function f: [a, b]→E to be differentiable almost everywhere on a segment [a, b]. We establish that, in the case where the sharpness condition is not satisfied, the major part (in the category sense) of Lipschitz functions has no derivatives at any point of the segment [a, b].

Published

25.04.1997

Issue

Section

Research articles

How to Cite

Bondar, A. V. “On Differential Properties of Mappings into a Banach Space”. Ukrains’kyi Matematychnyi Zhurnal, vol. 49, no. 4, Apr. 1997, pp. 500–509, https://umj.imath.kiev.ua/index.php/umj/article/view/5023.