On sequences that do not increase the number of real roots of polynomials

Authors

  • A. G. Bakan
  • A. P. Holub

Abstract

A complete description is given for the sequences $\{λ_k}_{k = 0}^{ ∞}$ such that, for an arbitrary real polynomial $f(t) = \sum\nolimits_{k = 0}^n {a_k t^k }$, an arbitrary $A \in (0, +∞)$, and a fixed $C \in (0,+∞)$, the number of roots of the polynomial $(Tf)(t) = \sum\nolimits_{k = 0}^n {a_k \lambda _k t^k }$ on $[0,C]$ does not exceed the number of roots off $(t)$ on $[0, A]$.

Published

25.10.1993

Issue

Section

Research articles

How to Cite

Bakan, A. G., and A. P. Holub. “On Sequences That Do Not Increase the Number of Real Roots of Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 45, no. 10, Oct. 1993, pp. 1323–1331, https://umj.imath.kiev.ua/index.php/umj/article/view/5937.