On some properties of the Gram operator
DOI:
https://doi.org/10.3842/umzh.v77i3.8685Keywords:
systems of subspaces, Gram operator, Hilbert space, orthogonal projectorAbstract
UDC 512.552.4
The $G$-construction allows us to obtain a system of subspaces using an abstract Gram operator. Any system of subspaces is unitarily equivalent to a system constructed by using this method. We propose another construction of a system of subspaces with the same property, provide criteria for the unitary equivalence of a pair of systems of subspaces in terms of the corresponding Gram operators, and study the problem of irreducibility of a system of subspaces in terms of the corresponding Gram operator. In addition, we provide an example illustrating how the obtained results apply to the study of a certain class of the systems of subspaces.
References
1. Ю. С. Самойленко, А. В. Стрелец, О простых $n$-ках подпространств гильбертова пространства, Укр. мат. журн., 61, № 12, 1668–1703 (2009).
2. А. В. Стрелец, И. С. Фещенко, О системах подпространств гильбертова пространства, удовлетворяющих условиям на угол или коммутации для каждой пары подпространств, Алгебра и анализ, 24, № 5, 181–214 (2012).
3. Е. Н. Ашурова, В. Л. Островський, Про зображення “all but two” алгебр, Збiрник праць Iнституту математики НАН України, 12, № 1, 8–21 (2015).
4. A. V. Strelets, On the graph $K_{1,n}$ related configurations of subspaces of a Hilbert space, Methods Funct. Anal. and Topology, 23, № 3, 285–300 (2017).
5. V. L. Ostrovskyi, Yu. S. Samoilenko, Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators, Harwood Acad. Publ., Amsterdam (1999).
6. R. G. Douglas, On majorization, factorization, and range inclusion of operators on hilbert space, Proc. Amer. Math. Soc., 17, 413–415 (1966). DOI: https://doi.org/10.1090/S0002-9939-1966-0203464-1
7. Н. Д. Попова, Ю. С. Самойленко, О. В. Стрілець, Про $*$-зображення одного класу алгебр, пов'язаних із графами Кокстера, Укр. мат. журн., 60, № 4, 545–556 (2008).
8. N. D. Popova, Yu. S. Samoilenko, A. V. Strelets, On Coxeter graph related configurations of subspaces of a Hilbert space, Operator Theory Adv. and Appl., 190, 429–450 (2009). DOI: https://doi.org/10.1007/978-3-7643-9919-1_27
9. N. D. Popova, A. V. Strelets, On $*$-representations of a class of algebras with polynomial growth related to Coxeter graphs, Methods Funct. Anal. and Topology, 17, № 3, 252–273 (2011).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 O. Strilets

This work is licensed under a Creative Commons Attribution 4.0 International License.