A nondegenerate interpolation continued fraction
DOI:
https://doi.org/10.3842/umzh.v77i5.8698Keywords:
ланцюговий дріб, невироджений інтерполяційний ланцюговий дріб, алгоритм побудовиAbstract
UDC 517.518:519.652
We prove that the Thiele's interpolation continued fraction has either \(2k-1\) approximants when the function is a polynomial of the \(k\)th degree or \(2k\) approximants for the function \(g(z) =a/(z-\alpha)^k.\) We specify the conditions under which the coefficients of the continued fraction are finite and different from zero. For a given set of values of the functions at the nodes, we propose an algorithm that either constructs a nondegenerate interpolation continued fraction or establishes the impossibility of this construction. We also present some examples.
References
1. G. A. Baker (Jr.), P. Graves-Morris, Padé Approximants, Addison–Wesley, London (1981).
2. P. R. Graves-Morris, T. R. Hopkins, Reliable rational interpolation, Numer. Math., 36, 111–128 (1980). DOI: https://doi.org/10.1007/BF01396754
3. D. C. Handscomb, Methods of numerical approximation, Lectures delivered at a Summer School held at Oxford University, September 1965, Elsevier (2014).
4. F. B. Hildebrand, Introduction to numerical analysis, Dover Publ., New York (1987).
5. J. M. Hoene-Wroński, Introduction à la Philosophie des Mathématiques et Technie de l'Algorithmique, Courcier, Paris (1811).
6. J. M. Hoene-Wroński, Philosophie de la Technie Algorithmique: Loi Suprême et universelle des Mathématiques, de L'imprimerie de P. Didot L'Aine, Paris (1815–1817).
7. L. M. Milne-Thomson, The calculus of finite differences, Amer. Math. Soc. (2000).
8. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin (1924). DOI: https://doi.org/10.1007/978-3-642-50824-0
9. N. E. Nörlund, Fractions continues et différences réciproques, Acta Math., 34, 1–108 (1911). DOI: https://doi.org/10.1007/BF02393124
10. М. Пагіря, Наближення функцій ланцюговими дробами, Ґражда, Ужгород (2016).
11. P. Henrici, P. Pfluger, Truncation error estimates for Stieltjes fractions, Numer. Math., 9, 120–138 (1966). DOI: https://doi.org/10.1007/BF02166031
12. T. N. Thiele, Interpolationsprechnung, Commisission von B. G. Teubner, Leipzig (1909).
13. W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Addison-Wesley Publ. Co., London (1980).
14. І. П. Гаврилюк, В. Л. Макаров, Методи обчислень, т. 1, Вища школа, Київ (1995).
15. М. М. Пагіря, Дві властивості обернених похідних Тіле, Збірник праць Інституту математики НАН України, 12, № 4, 226–234 (2015).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Юлія Мисло, Михайло Пагіря

This work is licensed under a Creative Commons Attribution 4.0 International License.