Characteristics of equilibrium states in the models of struggle between alternative opponents in the presence of external assistance only to individual players

Authors

  • T. Karataieva Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • V. Koshmanenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.3842/umzh.v77i3.8711

Keywords:

dynamical system, equilibrium states, difference equations, stability

Abstract

UDC 517.9

We determine the characteristics (type, number, position in the phase portrait, and stability) of the equilibrium states of a dynamical system simulating the competition between individuals in an abstract society a  part of which receives external assistance. By analyzing a system with three individuals as an example, we determine the detailed description of the dependence of phase portrait of the system on the values of the parameter of assistance and its bifurcation thresholds for two cases where assistance is provided only to one or to two players. For possible applications, we propose an interpretation of the equilibrium states as compromises in the conflict competition of social clusters.

References

1. T. V. Karataeva, V. D. Koshmanenko, A model of conflict society with external influence, J. Math. Sci., 272, № 2, 244–266 (2023); DOI 10.1007/s10958-023-06414-0. DOI: https://doi.org/10.1007/s10958-023-06414-0

2. T. V. Karataieva, V. D. Koshmanenko, Equilibrium states of the dynamic conflict system for three players with a parameter of influence of the ambient environment, J. Math. Sci., 274, № 6 (2023). DOI: https://doi.org/10.1007/s10958-023-06649-x

3. T. V. Karataieva, V. D. Koshmanenko, M. J. Krawczyk, K. Kulakowski, Mean field model of a game for power, Phys. A, 525, 535–547 (2019); https://doi.org/10.1016/j.physa.2019.03.110. DOI: https://doi.org/10.1016/j.physa.2019.03.110

4. P. Glendinning, Stability, instability and chaos, Cambridge (1994). DOI: https://doi.org/10.1017/CBO9780511626296

5. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag (2003); DOI: 10.1007/b97481. DOI: https://doi.org/10.1007/b97481

6. O. Burylko, Y. Kazanovich, R. Borisyuk, Winner-take-all in a phase oscillator system with adaptation, Sci. Rep., 8, Article 416 (2018); https://doi.org/10.1038/s41598-017-18666-3. DOI: https://doi.org/10.1038/s41598-017-18666-3

7. H. Hong, S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies, Phys. Rev. E, 84, Article 046202 (2011). DOI: https://doi.org/10.1103/PhysRevE.84.046202

8. J. M. Epstein, Nonlinear dynamics, mathematical biology, and social science, Addison-Wesley Publ. Co., Adv. Book Program, Reading, MA (1997); https://doi.org/10.1201/9780429493409. DOI: https://doi.org/10.1201/9780429493409

9. V. Koshmanenko, On the conflict theorem for a pair of stochastic vectors, Ukr. Math. J., 55, № 4, 555–560 (2003). DOI: https://doi.org/10.1023/B:UKMA.0000010167.63115.37

10. V. Koshmanenko, The theorem of conflict for probability measures, Math. Methods Oper. Res., 59, № 2, 303–313 (2004). DOI: https://doi.org/10.1007/s001860300330

11. В. Д. Кошманенко, Спектральна теорія динамічних систем конфлікту, Наук. думка, Київ (2016).

12. В. Кошманенко, Формула конфліктної динаміки, Збірник праць Інституту математики НАН України, 17, № 2, 113–149 (2020).

13. V. Koshmanenko, The theory of dynamical systems of conflict in the framework of functional analysis, Збірник праць Інституту математики НАН України, 20, № 1, 843–872 (2023). DOI: https://doi.org/10.3842/trim.v20n1.530

14. A. Bayliss, A. Nepomnyashchy, V. A. Volpert, Mathematical modeling of cyclic population dynamics, Phys. D, 394, № 2, 56–78 (2019); DOI: 10.1016/j.physd.2019.01.010. DOI: https://doi.org/10.1016/j.physd.2019.01.010

15. G. I. Bischi, F. Tramontana, Three-dimensional discrete-time Lotka–Volterra models with an application to industrial clusters, Commun. Nonlinear Sci. and Numer. Simul., 15, № 10, 3000–3014 (2010); DOI:10.1016/ j.cnsns.2009.10.021. DOI: https://doi.org/10.1016/j.cnsns.2009.10.021

16. I. Djellit, M. L. Sahari, A. Hachemi, Сomplex dynamics in 2-species predator-prey systems, J. Appl. Anal. and Comput., 3, № 1, 11–20 (2013); Website:http://jaac-online.com/. DOI: https://doi.org/10.11948/2013002

17. Hu Haibo, Competing opinion diffusion on social networks, Roy. Soc. Open Sci., 4, Article 171160 (2017); https://doi.org/dx.doi.org/10.1098/rsos.171160. DOI: https://doi.org/10.1098/rsos.171160

18. I. R. Johnson, N. J. MacKay, Lanchester models and the Battle of Britain, University of York, United Kingdom (2008); DOI: 10.1002/nav.20328. DOI: https://doi.org/10.1002/nav.20328

19. V. Hadziabdic, M. Mehuljic, J. Bektesevic, N. Mujic, Coexistence between predator and prey in the modified Lotka–Volterra model, TEM J., 7, № 2, 330–334 (2018); DOI: 10.18421/TEM72-14, https://dx.doi.org/10.18421/TEM72-14. DOI: https://doi.org/10.18421/TEM72-14

20. P. Liu, S Elaydi, Discrete competitive and cooperative models of Lotka–Volterra type, J. Comput. Anal. and Appl., 3, № 1, 53–73 (2001); DOI: 10.1023/A:1011539901001. DOI: https://doi.org/10.1023/A:1011539901001

21. P. Ashwin, G. P. King, J. W. Swift, Three identical oscillators with symmetric coupling, Nonlinearity, 3, № 3, 585–601 (1990); DOI 10.1088/0951-7715/3/3/003. DOI: https://doi.org/10.1088/0951-7715/3/3/003

22. P. Ashwin, O. Burylko, Y. Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators, Phys. D, 237, № 4, 454–466 (2008); https://doi.org/10.1016/j.physd.2007.09.015. DOI: https://doi.org/10.1016/j.physd.2007.09.015

23. J. Wojcik, J. Schwabedal, R. Clewley, A. L. Shilnikov, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PLoS ONE, 9, № 4, e92918 (2014); https://doi.org/10.1371/journal.pone.0092918. DOI: https://doi.org/10.1371/journal.pone.0092918

24. S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Perseus Books Publishing, L.L.C. (1994).

25. M. DeGroot, Reaching a consensus, J. Amer. Statist. Assoc., 69, 291–293 (1974); https://doi.org/10.1080/ 01621459.1974.10480137.

26. L. Li, A. Scaglione, A. Swami, Q. Zhao, Consensus, polarization and clustering of opinions in social networks, J. Selected Areas in Commun., 31, № 6, 1072–1083 (2013); DOI: 10.1109/JSAC.2013.130609. DOI: https://doi.org/10.1109/JSAC.2013.130609

27. R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis and simulations, J. Artificial Soc. and Soc. Simul., 5, № 3, 1–33 (2002); http://jasss.soc.surrey.ac.uk/5/3/2.html.

28. G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 87–98 (2000); DOI:10.1142/S0219525900000078. DOI: https://doi.org/10.1142/S0219525900000078

Published

07.11.2025

Issue

Section

Research articles

How to Cite

Karataieva, T., and V. Koshmanenko. “Characteristics of Equilibrium States in the Models of Struggle Between Alternative Opponents in the Presence of External Assistance Only to Individual Players”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 3, Nov. 2025, pp. 163–186, https://doi.org/10.3842/umzh.v77i3.8711.