New explicit approximate solution of the Boltzmann equation in the case of the hard sphere model

Authors

  • O. Hukalov B. I. Verkin Institute of Low Temperature Physics and Technology, Kharkiv and Kharkiv National University named after V. N. Karazin https://orcid.org/0000-0003-2099-5036
  • V. Gordevskyy B. I. Verkin Institute of Low Temperature Physics and Technology, Kharkiv and Kharkiv National University named after V. N. Karazin

DOI:

https://doi.org/10.3842/umzh.v77i8.9164

Keywords:

The Boltzmann equation, hard spheres, the uniform-integral error, ''accelerating-packing'' motion

Abstract

UDC 517.9

We construct an approximate solution to the nonlinear kinetic Boltzmann equation for the case of hard-sphere model. It has the form of an infinite sum of some Maxwellian modes with coefficient functions of the spatial coordinate and time. We establish sufficient conditions for the coefficient functions and  hydrodynamic parameters appearing in the distribution and allowing us to make the analyzed deviation arbitrarily small.

References

1. C. Cercignani, The Boltzmann equation and its applications, Springer, New York (1988). DOI: https://doi.org/10.1007/978-1-4612-1039-9

2. C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Springer-Verlag (1994). DOI: https://doi.org/10.1007/978-1-4419-8524-8

3. G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases, Springer, Berlin, Heidelberg (2010). DOI: https://doi.org/10.1007/978-3-642-11696-4

4. R. Soto, Kinetic theory and transport phenomena, Oxford University Press (2016). DOI: https://doi.org/10.1093/acprof:oso/9780198716051.001.0001

5. C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina, Many-particle dynamics and kinetic equations, Springer (1997). DOI: https://doi.org/10.1007/978-94-011-5558-8

6. T. Carleman, Problemes mathematiques dans la theorie cinetique des gaz, Publ. Sci. Inst. Mittag-Leffler, 2 Almqvist & Wiksells Boktryckeri AB, Uppsala (1957).

7. H. Grad, On the kinetic theory of rarefield gases, Commun. Pure and Appl. Math., 2, № 4, 331–407 (1949). DOI: https://doi.org/10.1002/cpa.3160020403

8. О. Г. Фридлендер, Локально-максвелловские решения уравнения Больцмана, Прикл. математика и механика, 29, № 5, 973–977 (1965).

9. I. Gallagher, L. Saint-Raymond, B. Texier, From Newton to Boltzmann: hard spheres and short-rangepotentials, Zür. Lect. Adv. Math., EMS Publ. House, Zürich (2014). DOI: https://doi.org/10.4171/129

10. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungsberichte Akademie der Wissenschaften, 66, 275–370; English translation: Hist. Modern Phys. Sci., 1, 262–349 (2003).

11. J. C. Maxwell, I. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres, Philos. Mag. (5), 19, 19–32 (1860). DOI: https://doi.org/10.1080/14786446008642818

12. J. C. Maxwell, II. Illustrations of the dynamical theory of gases, Philos. Mag., 20, 21–37 (1860). DOI: https://doi.org/10.1080/14786446008642902

13. A. V. Bobylev, On the exact solutions of the Boltzmann equation, Dokl. AN SSSR, 225, № 6, 1296–1299 (1975).

14. V. I. Gerasimenko, On the approaches to the derivation of the Boltzmann equation with hard sphere collisions, Proc. Inst. Math. NAS Ukraine, 10, № 2, 71–95 (2013).

15. C. Bardos, I. M. Gamba, F. Golse, C. David Levermore, Global solutions of the Boltzmann equation over $R^d$ near global Maxwellians with small mass, Commun. Math. Phys., 346, 435–467 (2016). DOI: https://doi.org/10.1007/s00220-016-2687-7

16. Yu. N. Grigor’ev, S. V. Meleshko, A. Suriyawichitseranee, Exact solutions of the Boltzmann equations with a source, J. Appl. Mech. and Tech. Phys., 59, 189–196 (2018). DOI: https://doi.org/10.1134/S0021894418020013

17. V. D. Gordevskyy, On the non-stationary Maxwellians, Math. Methods Appl. Sci., 27, № 2, 231–247 (2004). DOI: https://doi.org/10.1002/mma.455

18. V. D. Gordevskyy, N. V. Andriyasheva, Interaction between ``Accelerating-Packing'' flows in a low-temperature gas, J. Math. Phys. Anal. Geom., 5, № 1, 38–53 (2009).

19. V. D. Gordevskii, A. A. Gukalov, Approximate solutions of the Boltzmann equation with infinitely many modes, Ukr. Mat. Zh., 69, № 3, 311–323 (2017). DOI: https://doi.org/10.1007/s11253-017-1369-8

20. V. D. Gordevskyy, Approximate billow solutions of the kinetic Bryan–Pidduck equation, Math. Methods Appl. Sci., 23, № 13, 1121–1137 (2000). DOI: https://doi.org/10.1002/1099-1476(20000910)23:13<1121::AID-MMA154>3.0.CO;2-A

Published

11.09.2025

Issue

Section

Research articles

How to Cite

Hukalov, O., and V. Gordevskyy. “New Explicit Approximate Solution of the Boltzmann Equation in the Case of the Hard Sphere Model”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 8, Sept. 2025, pp. 503–520, https://doi.org/10.3842/umzh.v77i8.9164.