Inverse initial-value problem in the spaces of Bessel potentials

Authors

  • P. Boyko Lviv Polytechnic National University
  • A. Lopushansky University of Rzeszów, Poland
  • H. Lopushanska Ivan Franko National University of Lviv

DOI:

https://doi.org/10.3842/umzh.v77i11.9199

Keywords:

fractional derivative, fractional diffusion equation, convolution, spaces of Bessel potentials, Green's vector-function, integral equation

Abstract

UDC 517.95

We study the inverse problem of reconstruction (in the entire scale of spaces of Bessel potentials) of the initial values of the solution to a time-space fractional diffusion equation with a time-integral additional condition. We also establish sufficient conditions for the unique solvability of the inverse problem.

References

1. V. V. Anh, N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Stat. Phys., 104, № 5/6, 1349–1387 (2001). DOI: https://doi.org/10.1023/A:1010474332598

2. Duan Jun Sheng, Time- and space-fractional partial differential equations, J. Math. Phys., 46, Article 013504 (2005). DOI: https://doi.org/10.1063/1.1819524

3. S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Birkhäuser-Verlag, Basel etc. (2004). DOI: https://doi.org/10.1007/978-3-0348-7844-9

4. R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations, Fract. Calc. and Appl. Anal., 3, 75–86 (2000).

5. A. Hanyga, Multi-dimensional solutions for space-time-fractional diffusion equations, Proc. Roy. Soc. London, 458, 429–450 (2002). DOI: https://doi.org/10.1098/rspa.2001.0893

6. N. Kinash, Ja. Janno, An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space-dependent sources in fractional diffusion and wave equations, Mathematics, 7, № 19 (2019); ARTN 1138.10.3390/math7121138. DOI: https://doi.org/10.3390/math7121138

7. M. Kirane, A. Lopushansky, H. Lopushanska, Inverse problem for a time fractional differential equation with a time- and space-integral conditions, Math. Methods Appl. Sci., 46, № 15, 16381–16393 (2023); DOI:10.1002/mma.9453. https://doi.org/10.1002/mma.9453. DOI: https://doi.org/10.1002/mma.9453

8. M. Kirane, A. Lopushansky, H. Lopushanska, Determination of two unknown functions of different variables in a time-fractional differential equation, Math. Methods Appl. Sci. (2024); DOI:10.1002/mma.10539. DOI: https://doi.org/10.1002/mma.10539

9. A. Kochubei, Fractional-parabolic systems, Potential Anal., 37, 1–30 (2012); https://doi.org/10.1007/s11118-011-9243-z. DOI: https://doi.org/10.1007/s11118-011-9243-z

10. A. Lopushansky, The Cauchy problem for an equation with fractional derivatives in Bessel potential spaces, Sib. Math. J., 55, № 6, 1089–1097 (2014); DOI:10.1134/30037446614060111. DOI: https://doi.org/10.1134/S0037446614060111

11. A. Lopushansky, O. Lopushansky, A. Szpila, Fractional abstract Cauchy problem on complex interpolation scales, Fract. Calc. and Appl. Anal., 23, № 4, 1125–1140 (2020); DOI:10.1515/fca-2020-0057. DOI: https://doi.org/10.1515/fca-2020-0057

12. A. Lopushansky, O. Lopushansky, S. Sharyn, Nonlinear inverse problem of control diffusivity parameter determination for a space-time fractional diffusion equation, Appl. Math. and Comput., 390, № 125589 (2021); https://doi.org/10.1016/j.amc.2020.125589. DOI: https://doi.org/10.1016/j.amc.2020.125589

13. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, № 6, 23–28 (1996). DOI: https://doi.org/10.1016/0893-9659(96)00089-4

Published

24.10.2025

Issue

Section

Research articles

How to Cite

Boyko, P., et al. “Inverse Initial-Value Problem in the Spaces of Bessel Potentials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 11, Oct. 2025, pp. 651–658, https://doi.org/10.3842/umzh.v77i11.9199.