Initial-boundary problem of the convection of viscous weakly-compressible liquid with presence of axial symmetry. II. Stability of generalized solutions

Authors

  • V. B. Moseenkov Ин-т математики АН УССР, Киев

Keywords:

-

Abstract

The study of an axially-symmetric problem on the convection of a viscous, thermally inhomogeneous, weakly compressible fluid which fills a cavity in a solid is continued. A theorem on the continuous dependence of its generalized solutions on the initial conditions and on the perturbations is proved. Bounds of exponential type are obtained which characterize the decay of the solutions (in the mean) for large values of the time.

References

7. Мосеенков В. Б. Начально-краевая задача конвекции вязкой слабо сжимаемой жид- -кости при наличии осевой симметрии. I. Однозначная разрешимость в целом // Укр. мат. журн.— 1990.— 42, № 12.— С. 1664—1672.

8. Мосеенков В. Б. Об устойчивости решений осесимметричной задачи конвекции вязкой, жидкости // Там же.— 1989.— 41, № 2.— С. 182—188,

Published

18.01.1991

Issue

Section

Research articles

How to Cite

Moseenkov , V. B. “Initial-Boundary Problem of the Convection of Viscous Weakly-Compressible Liquid With Presence of Axial Symmetry. II. Stability of Generalized Solutions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 43, no. 1, Jan. 1991, pp. 99-105, https://umj.imath.kiev.ua/index.php/umj/article/view/9311.