On properties of continuous mapings of nonlimited metric spaces
Keywords:
-Abstract
Suppose a closed unbounded set $F\subset R_n$ is a union of a finite number $p$ of closed unbounded sets $F_i$ that are pairwise disjoint, and suppose $f$ is a continuous mapping of $F$ into the metric space $R^{(2)}$. With each set $F_i$ there is associated a point at infinity $\infty$, at which it is assumed that $f$ has a finite limit $A_i\in R^{(2)}, i=1,2,\dots,p$.
It is proved that: 1) $f$ is bounded on $F$; 2) if $f$ is a real functional, then the set $f(F)U (\bigcup_{i=1}^pA_i)$ contains a smallest and a largest value; 3) if the distance between $F_i$ and $F_j$ is greater than zero whenever $i\ne j$, then $f$ is uniformly continuous on $F$.
References
1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа.— М. : Наука, 1972.— 486 с.
2. Давидов Ki. О. Курс математичного аналізу.— К. : Вища шк., 1978.— Ч. 2.— 389 с.
Downloads
Published
Issue
Section
License
Copyright (c) 1991 Н. А. Давыдов

This work is licensed under a Creative Commons Attribution 4.0 International License.