Про одну оцiнку для подiлених рiзниць та її застосування

Автор(и)

  • К. А. Копотун
  • Д. Левіатан Tel Aviv Univ., Israel
  • І. О. Шевчук

Анотація

Наведено оцiнку узагальненої подiленої рiзницi $[x_0, ..., x_m; f]$, де деякi з точок $x_i$ можуть збiгатися (в цьому випадку $f$ вважається досить гладкою). Цю оцiнку потiм застосовано для суттєвого посилення вiдомих нерiвностей Уiтнi i Маршу та узагальнення їх для полiномiальної iнтерполяцiї Ермiта. Наприклад, одним iз численних наслiдкiв цiєї оцiнки є той факт, що для заданої функцiї $f \in C(r)(I)$ та набору точок $Z = \{ z_j\}^{\mu}_{j=0}$ таких, що $z_{j+1} - z_j \geq \lambda | I|$ для всiх $0 \leq j \leq \mu 1$, де $I := [z_0, z_{\mu} ], | I|$ — довжина $I, \lambda $ — деяке додатне число, полiном Ермiта $\scr L(\cdot ; f;Z)$ степеня $\leq r\mu + \mu + r$, який задовольняє $\scr L^{(j)}(z\nu ; f;Z) = f(j)(z\nu )$ для $0 \leq \nu \leq \mu$ i $0 \leq j \leq r$, наближає $f$ так, що для всiх $x \in I$ $$| f(x) \scr L (x; f;Z)| \leq C (\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z))^{r+1} \int^{2| I|}_{dist (x,Z)}\frac{\omega_{m-r}(f^{(r)}, t, I)}{t^2}dt,$$ де $m := (r + 1)(\mu + 1), C = C(m, \lambda)$ i $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z) := \mathrm{m}\mathrm{i}\mathrm{n}0\leq j\leq \mu | x zj | $.

Завантаження

Опубліковано

25.02.2019

Номер

Розділ

Статті

Як цитувати

Копотун, К. А., et al. “Про одну оцiнку для подiлених рiзниць та її застосування”. Український математичний журнал, vol. 71, no. 2, Feb. 2019, pp. 230-45, https://umj.imath.kiev.ua/index.php/umj/article/view/1434.