О множествах точек ветвления отображений, более общих, чем квазирегулярпые

Автор(и)

  • Е. А. Севостьянов

Анотація

Доведено, що якщо точка$x_0 ∊ ℝ^n, \; n ≥ 3$, є істотною ізольованою сингулярністю відкритого дискретного $Q$-відображення $f : D → \overline{ℝ^n},\; B_f$ — множина точок розгалуження $f$ у $D$ і точка $z_0 ∊ \overline{ℝ^n}$ є асимптотичною границею $f$ у точці $x_0$, то для будь-якого околу $U$, що містить точку $x_0$, $z_0 ∊ \overline{f(B_f ∩ U)}$ при умові, що функція $Q$ має скінченне середнє коливання у точці $x_0$ або логарифмічну сингулярність порядку не вище ніж $n − 1$. Більш того, при вказаних умовах на функцію $Q$ і $n ≥ 2$ кожна точка множини $\overline{ℝ^n}\ f(D)$ є асимптотичною границею $f$ у точці $x_0$, і при $n ≥ 3$ має місце співвідношення $\overline{ℝ^n}∖f(D) ⊂\overline{f(B_f ∩ U)}$. Якщо, крім того, $∞ ∉ f(D)$, то множина $f B_f$ є необмеженою і $x_0 ∈ \overline{B_f}$.

Опубліковано

25.02.2010

Номер

Розділ

Статті

Як цитувати

Севостьянов, Е. А. “О множествах точек ветвления отображений, более общих, чем квазирегулярпые”. Український математичний журнал, vol. 62, no. 2, Feb. 2010, pp. 215–230, https://umj.imath.kiev.ua/index.php/umj/article/view/2858.