Indecomposable and isomorphic objects in the category of monomial matrices over a local ring

Authors

  • V. M. Bondarenko Ин-т математики НАН Украины, Киев
  • M. Yu. Bortos

Abstract

We study the indecomposability and isomorphism of objects from the category of monomial matrices $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}(K)$ over a commutative local principal ideal ring $K$ (whose objects are square monomial matrices and the morphisms from $X$ to $Y$ are the matrices $C$ such that $XC = CY$). We also study the subcategory $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}_0(K)$ of the category $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}(K)$ with the same objects and only those morphisms that are monomial matrices.

Published

25.07.2017

Issue

Section

Research articles

How to Cite

Bondarenko, V. M., and M. Yu. Bortos. “Indecomposable and Isomorphic Objects in the Category of Monomial Matrices over a Local Ring”. Ukrains’kyi Matematychnyi Zhurnal, vol. 69, no. 7, July 2017, pp. 889-04, https://umj.imath.kiev.ua/index.php/umj/article/view/1744.